Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Lecture 10: Operations on Multiple Random Variables
Department of Communication \& Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Operations on Multiple Random Variables

1. Expected Value of a Function of Random Variables
2. Joint Moments
3. Joint Characteristic Functions
4. Variance for Joint Distributions (Covariance)
5. Conditional Expectation, Variance, and Moments
6. Examples

1. Expected Value of a Function of Random Variables

\checkmark The expected value of a function of random variables X and Y is given by

$$
\bar{g}=E[g(X, Y)]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{X, Y}(x, y) d x d y
$$

\checkmark For \mathbb{N} random variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots \ldots \mathbf{X}_{N}$

$$
\begin{aligned}
\bar{g}= & E\left[g\left(X_{1}, \cdots, X_{N}\right)\right] \\
& =\int_{-\infty}^{+\infty} \cdots \cdots \int_{-\infty}^{+\infty} g\left(x_{1}, \cdots, x_{N}\right) f_{X_{1}, \cdots, X_{N}}\left(x_{1}, \cdots, x_{N}\right) d x_{1} \cdots d x_{N}
\end{aligned}
$$

2. Joint Moments

Joint Moments about the Origin (Product Moments):
\checkmark The $\mathbf{r}_{\text {th }}$ and $s_{\text {th }}$ product moment about the origin of the random variables \mathbf{X} and Y, denoted by $\mu_{r, s}^{\prime}$ is the expected value of $X^{r} Y^{s}$ symbolically

$$
\mu_{r, s}^{\prime}=E\left(X^{r} Y^{s}\right)=\sum_{x} \sum_{y} x^{r} y^{s} \cdot f(x, y)
$$

For $r=0,1,2, \ldots$ and $s=0,1,2, \ldots$ when X and Y are discrete, And

$$
\mu_{r, s}^{\prime}=E\left(X^{r} Y^{s}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{r} y^{s} \cdot f(x, y) d x d y
$$

When X and Y are continuous.
\checkmark The joint moments of the random variables X and Y about the origin are defined by

$$
m_{n k}=E\left[X^{n} Y^{k}\right]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{n} y^{k} f_{X, Y}(x, y) d x d y
$$

○ The sum $n+k$ called the order of the moments.
Clearly:

$$
\begin{array}{|ll|}
m_{n o}=E\left[X^{n}\right] & \text { are the moments of } X \\
m_{0 k}=E\left[Y^{k}\right] & \text { are the moments of } Y \\
\hline
\end{array}
$$

\checkmark The first order joint moments:

$$
\begin{array}{ll}
m_{10}=E[X]=\bar{X} & \text { the mean value of } X \\
m_{01}=E[Y]=\bar{Y} & \text { the mean value of } Y
\end{array}
$$

\checkmark The second order joint moments:

$$
\begin{array}{ll}
m_{20}=E\left[X^{2}\right] & \text { the mean square value of } X \\
m_{02}=E\left[Y^{2}\right] & \text { the mean square value of } Y \\
m_{11}=E[X Y] & \text { the correlatio n of } X \text { and } Y
\end{array}
$$

\checkmark The correlation of \mathbf{X} and \mathbf{Y} is important to later work:

$$
R_{X Y}=m_{11}=E[X Y]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X, Y}(x, y) d x d y
$$

a) If

$$
R_{X Y}=E[X] E[Y]
$$

Then X and Y said to be uncorrelated
b) Statistical independence of X and Y is sufficient to guarantee they are uncorrelated but the converse is not necessarily true in general.
c) If

$$
R_{X Y}=0
$$

Then X and Y called orthogonal random variables.

\checkmark Example:

Let \mathbf{X} be a random variable that has a mean value $E[X]=3$ and variance $\sigma_{X}^{2}=2$. Another random variable is defined by $Y=$ $-6 X+22$. Find the mean value of Y, the variance of Y and the correlation of \mathbf{X} and Y.

- Solution:

$$
\left.\begin{array}{l}
\sigma_{X}^{2}=E\left[X^{2}\right]-\bar{X}^{2} \Rightarrow E\left[X^{2}\right]=\sigma_{X}^{2}+\bar{X}^{2}=2+3^{2}=11 \\
E[Y]=E[-6 X+22]=-6 E[X]+22=4 \\
E\left[Y^{2}\right]=E\left[(-6 X+22)^{2}\right]=E\left[36 X^{2}-264 X+484\right] \\
\quad=36 E\left[X^{2}\right]-264 E[X]+484=88
\end{array}\right\} \begin{gathered}
\sigma_{Y}^{2}=E\left[Y^{2}\right]-\bar{Y}^{2}=72 \\
R_{X Y}=E[X Y]=E\left[-6 X^{2}+22 X\right]=-6 E\left[X^{2}\right]+22 E[X] \\
=-6(11)+22(3)=0 \\
\text { Since } R_{X Y}=0, X \text { and } Y \text { are orthogonal } \\
\quad R_{X Y} \neq E[X] E[Y], X \text { and } Y \text { are not uncorrelat ed }
\end{gathered}
$$

Joint Central Moments (Product Moments about the mean):

\checkmark The $\mathbf{r}_{\text {th }}$ and $\mathbf{s}_{\text {th }}$ product moment about the means of the random variables \mathbf{X} and \mathbf{Y}, denoted by $\mu_{r, s}$ is the expected value of $\left(\mathbf{X}-\mu_{\mathrm{X}}\right)^{\mathrm{r}}\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)^{s}$ symbolically

$$
\begin{aligned}
\mu_{r, s} & =E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right] \\
& =\sum_{x} \sum_{y}\left(x-\mu_{X}\right)^{r}\left(y-\mu_{Y}\right)^{s} \cdot f(x, y)
\end{aligned}
$$

For $r=0,1,2, \ldots$ and $s=0,1,2, \ldots$ when X and Y are discrete, And

$$
\begin{aligned}
\mu_{r, s} & =E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{r}\left(y-\mu_{Y}\right)^{s} \cdot f(x, y) d x d y
\end{aligned}
$$

When X and Y are continuous.
\checkmark The joint central moments of the random variables \mathbf{X} and \mathbf{Y} are defined by

$$
\begin{aligned}
\mu_{n k} & =E\left[(X-\bar{X})^{n}(Y-\bar{Y})^{k}\right] \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(x-\bar{X})^{n}(y-\bar{Y})^{k} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

- The sum $n+k$ called the order of the moments.
\checkmark The first order central moments:

$$
\begin{aligned}
& \mu_{10}=E[X-\bar{X}]=0 \\
& \mu_{01}=E[Y-\bar{Y}]=0
\end{aligned}
$$

\checkmark The second order central moments:

$$
\begin{aligned}
& \mu_{20}=E\left[(X-\bar{X})^{2}\right]=\sigma_{X}^{2} \\
& \mu_{02}=E\left[(Y-\bar{Y})^{2}\right]=\sigma_{Y}^{2} \\
& \mu_{11}=E[(X-\bar{X})(Y-\bar{Y})]=C_{X Y}
\end{aligned}
$$

\checkmark The second order moment μ_{11} is called the covariance of X and Y and is given by

$$
\begin{aligned}
C_{X Y} & =\mu_{11}=E[(X-\bar{X})(Y-\bar{Y})] & \rho=\frac{\mu_{11}}{\sqrt{\mu_{20} \mu_{02}}}=\frac{C_{X Y}}{\sigma_{X} \sigma_{Y}} \\
& =R_{X Y}-E[X] E[Y] & \text { is called the correlatio n coeficicien } \mathrm{t}
\end{aligned}
$$

a) If X and Y are either independent or uncorrelated then

$$
\mathbf{C}_{\mathrm{XY}}=0
$$

b) If X and Y are orthogonal then

$$
c_{x r}=-E[X][[]]
$$

\checkmark Example: From the previous example

$$
\begin{array}{|lll|}
\hline \bar{X}=3 & \sigma_{X}^{2}=2 & Y=-6 X+22 \\
\bar{Y}=4 & R_{X Y}=0 & \\
\hline
\end{array}
$$

Find the covariance of \mathbf{X} and \mathbf{Y}.

- Solution:

$$
C_{X Y}=R_{X Y}-\bar{X} \bar{Y}=-12
$$

Note that

$$
C_{X Y}=-\bar{X} \bar{Y}, \quad \text { because } X \text { and } Y \text { are orthogonal }
$$

3. Joint Characteristic Functions

\checkmark The joint characteristic function of two random variables \mathbf{X} and \mathbf{Y} is defined by

$$
\begin{aligned}
\Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right) & =E\left[e^{j \omega_{1} X+j \omega_{2} Y}\right] \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{j \omega_{1} x+j \omega_{2} y} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

\checkmark The joint moments can be found as follows

$$
\begin{aligned}
& m_{n k}=\left.(-j)^{n+k} \frac{\partial^{n+k} \Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{1}^{n} \partial \omega_{2}^{k}}\right|_{\omega_{1}=0, \omega_{2}=0} \\
& \Phi_{X}\left(\omega_{1}\right)=\Phi_{X, Y}\left(\omega_{1}, 0\right) \text { and } \Phi_{Y}\left(\omega_{2}\right)=\Phi_{X, Y}\left(0, \omega_{2}\right) \\
& \text { are the marginal characteri stic functions }
\end{aligned}
$$

\checkmark Example:
Two random variables \mathbf{X} and \mathbf{Y} have the joint characteristic function

$$
\Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=e^{-2 \omega_{1}^{2}-8 \omega_{2}^{2}}
$$

Find $\bar{X}, \bar{Y}, R_{X Y}$ and $C_{X Y}$

- Solution:

$$
\begin{aligned}
& \bar{X}=m_{10}=\left.(-j)^{1+0} \frac{\partial^{1} \Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{1}^{1} \partial \omega_{2}^{0}}\right|_{\omega_{1}=0, \omega_{2}=0}=-\left.j\left(-4 \omega_{1}\right) e^{-2 \omega_{1}^{2}-8 \omega_{2}^{2}}\right|_{\omega_{1}=0, \omega_{2}=0}=0 \\
& \bar{Y}=m_{01}=\left.(-j)^{0+1} \frac{\partial^{1} \Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{1}^{0} \partial \omega_{2}^{1}}\right|_{\omega_{1}=0, \omega_{2}=0}=-\left.j\left(-16 \omega_{2}\right) e^{-2 \omega_{1}^{2}-8 \omega_{2}^{2}}\right|_{\omega_{1}=0, \omega_{2}=0}=0 \\
& R_{X Y}=m_{11}=\left.(-j)^{1+1} \frac{\partial^{2} \Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{1}^{1} \partial \omega_{2}^{1}}\right|_{\omega_{1}=0, \omega_{2}=0}=-\left.\left(-4 \omega_{1}\right)\left(-16 \omega_{2}\right) e^{-2 \omega_{1}^{2}-8 \omega_{2}^{2}}\right|_{\omega_{1}=0, \omega_{2}=0}=0 \\
& C_{X Y}=R_{X Y}-\bar{X} \bar{Y}=0 \quad \Rightarrow \quad X \text { and } Y \text { are uncorrelat ed }
\end{aligned}
$$

4. Variance for Joint Distributions (Covariance)

\checkmark If X and Y are two continuous random variables having joint density function $f(x, y)$, then

- The means, or expectations, of X and Y are

$$
\mu_{X}=E(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y, \quad \mu_{Y}=E(Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y
$$

- The variances are

$$
\begin{aligned}
& \sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} f(x, y) d x d y \\
& \sigma_{Y}^{2}=E\left[\left(Y-\mu_{Y}\right)^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} f(x, y) d x d y
\end{aligned}
$$

- Another quantity that arises in the case of two variables X and Y is the covariance defined by

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

- In terms of the joint density function $f(x, y)$, we have

$$
\sigma_{X Y}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y
$$

\checkmark For two discrete random variables

$$
\begin{gathered}
\mu_{X}=\sum_{x} \sum_{y} x f(x, y) \quad \mu_{Y}=\sum_{x} \sum_{y} y f(x, y) \\
\sigma_{X Y}=\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y)
\end{gathered}
$$

Some important theorems on covariance
\checkmark Theorem l:

$$
\sigma_{X Y}=E(X Y)-E(X) E(Y)=E(X Y)-\mu_{X} \mu_{Y}
$$

\checkmark Theorem 2: If X and Y are independent random variables, then

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=0
$$

\checkmark Theorem 3

$$
\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \pm 2 \operatorname{Cov}(X, Y)
$$

Or

$$
\sigma_{X \pm Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2} \pm 2 \sigma_{X Y}
$$

\checkmark Theorem 4

$$
\left|\sigma_{X Y}\right| \leq \sigma_{X} \sigma_{Y}
$$

Correlation Coefficient

\checkmark If \mathbf{X} and \mathbf{Y} are completely dependent, for example, when $\mathbf{X}=\mathbf{Y}$, then

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=\sigma_{X} \sigma_{Y}
$$

- From this we are led to a measure of the dependence of the variables \mathbf{X} and \mathbf{Y} given by

$$
\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

- We call ρ the correlation coefficient, or coefficient of correlation, $-1 \leq \rho \leq 1$.
\circ In the case where $\rho=0$ (i.e., the covariance is zero), we call the variables X and Y uncorrelated

5. Conditional Expectation, Variance, and Moments
\checkmark If X and Y have joint density function $f(x, y)$, then we can define the conditional expectation, or conditional mean, of \mathbf{Y} given \mathbf{X} by

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f(y \mid x) d y
$$

\checkmark We note the following properties

$$
\begin{aligned}
& \text { 1. } E(Y \mid X=x)=E(Y) \text { when } X \text { and } Y \text { are independent. } \\
& \text { 2. } E(Y)=\int_{-\infty}^{\infty} E(Y \mid X=x) f_{1}(x) d x \text {. }
\end{aligned}
$$

\checkmark In a similar manner, we can define the conditional variance of Y given X as

$$
E\left[\left(Y-\mu_{2}\right)^{2} \mid X=x\right]=\int_{-\infty}^{\infty}\left(y-\mu_{2}\right)^{2} f(y \mid x) d y
$$

Where

$$
\mu_{2}=E(Y \mid X=x)
$$

\checkmark Also we can define the r th conditional moment of Y about any value a given X as

$$
E\left[(Y-a)^{r} \mid X=x\right]=\int_{-\infty}^{\infty}(y-a)^{r} f(y \mid x) d y
$$

6. Examples

\checkmark Example 1: The joint and marginal probabilities of X and Y, are recorded as follows:

Find the covariance of X and Y.

- Solution
- Referring to the joint probabilities given here, we get

$$
\begin{aligned}
\mu_{1,1}^{\prime} & =E(X Y) \\
& =0 \cdot 0 \cdot \frac{1}{6}+0 \cdot 1 \cdot \frac{2}{9}+0 \cdot 2 \cdot \frac{1}{36}+1 \cdot 0 \cdot \frac{1}{3}+1 \cdot 1 \cdot \frac{1}{6}+2 \cdot 0 \cdot \frac{1}{12} \\
& =\frac{1}{6}
\end{aligned}
$$

- and using the marginal probabilities, we get

$$
\mu_{X}=E(X)=0 \cdot \frac{5}{12}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{12}=\frac{2}{3}
$$

- and

$$
\mu_{Y}=E(Y)=0 \cdot \frac{7}{12}+1 \cdot \frac{7}{18}+2 \cdot \frac{1}{36}=\frac{4}{9}
$$

- It follows that

$$
\sigma_{X Y}=\frac{1}{6}-\frac{2}{3} \cdot \frac{4}{9}=-\frac{7}{54}
$$

\checkmark Example 2: Find the covariance of the random variables whose joint probability density is given by

$$
f(x, y)= \begin{cases}2 & \text { for } x>0, y>0, x+y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

- Solution
$\left.\begin{array}{l}\mu_{X}=\int_{0}^{1} \int_{0}^{1-x} 2 x d y d x=\frac{1}{3} \\ \text { and } \\ \text { It follows that } \\ \mu_{Y}=\int_{0}^{1} \int_{0}^{1-x} 2 y d y d x=\frac{1}{3} \\ \sigma_{1,1}^{\prime}=\int_{0}^{1} \int_{0}^{1-x} 2 x y d y d x=\frac{1}{12} \\ \\ \sigma_{X Y}=\frac{1}{12}-\frac{1}{3} \cdot \frac{1}{3}=-\frac{1}{36}\end{array}\right]$
\checkmark Example 3: If the joint probability distribution of X and Y is given by the following table. Show that the covariance, of the two random variables, is zero even though they are not independent.

- Solution

\checkmark Example 4: Suppose that the random variables X and Y have a joint mass function given by

```
f(x,y)=c(2x+y)
                        Where
0\leqx\leq2,0\leqy\leq3
```

Find
(a) $E(X)$,
(b) $E(Y)$,
(c) $E(X Y)$,
(d) $E\left(X^{2}\right)$,
(e) $E\left(Y^{2}\right)$,
(f) $\operatorname{Var}(X)$,
(g) $\operatorname{Var}(\boldsymbol{Y})$,
(h) $\operatorname{Cov}(X, Y)$,
(i) ρ

- Solution

X	0	1	2	3	Totals \downarrow
0	0	c	$2 c$	$3 c$	$6 c$
1	$2 c$	$3 c$	$4 c$	$5 c$	$14 c$
2	$4 c$	$5 c$	$6 c$	$7 c$	$22 c$
Totals \rightarrow	$6 c$	$9 c$	$12 c$	$15 c$	$42 c$

$$
\begin{aligned}
& \text { (a) } \quad E(X)=\sum_{x} \sum_{y} x f(x, y)=\sum_{x} x\left[\sum_{y} f(x, y)\right] \\
& =(0)(6 c)+(1)(14 c)+(2)(22 c)=58 c=\frac{58}{42}=\frac{29}{21} \\
& \text { (b) } \\
& \text { (c) } \\
& \text { (d) } \\
& E\left(X^{2}\right)=\sum_{x} \sum_{y} x^{2} f(x, y)=\sum_{x} x^{2}\left[\sum_{y} f(x, y)\right] \\
& =(0)^{2}(6 c)+(1)^{2}(14 c)+(2)^{2}(22 c)=102 c=\frac{102}{42}=\frac{17}{7}
\end{aligned}
$$

(e)

$$
\begin{aligned}
E\left(Y^{2}\right) & =\sum_{x} \sum_{y} y^{2} f(x, y)=\sum_{y} y^{2}\left[\sum_{x} f(x, y)\right] \\
& =(0)^{2}(6 c)+(1)^{2}(9 c)+(2)^{2}(12 c)+(3)^{2}(15 c)=192 c=\frac{192}{42}=\frac{32}{7}
\end{aligned}
$$

$$
\begin{equation*}
\sigma_{X}^{2}=\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{17}{7}-\left(\frac{29}{21}\right)^{2}=\frac{230}{441} \tag{f}
\end{equation*}
$$

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{32}{7}-\left(\frac{13}{7}\right)^{2}=\frac{55}{49}
$$

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{17}{7}-\left(\frac{29}{21}\right)\left(\frac{13}{7}\right)=-\frac{20}{147}
$$

$$
\rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{-20 / 147}{\sqrt{230 / 441} \sqrt{55 / 49}}=\frac{-20}{\sqrt{230} \sqrt{55}}=-0.2103 \text { approx. }
$$

\checkmark Example 5: Suppose that the random variables X and Y have a joint density function given by

$$
f(x, y)=\left\{\begin{array}{lr}
\frac{1}{210}(2 x+y) & 2<x<6,0<y<5 \\
0 & \text { Otherwise }
\end{array}\right\}
$$

Find
(a) $E(X)$,
(b) $E(Y)$,
(c) $E(X Y)$,
(d) $E\left(X^{2}\right)$,
(e) $E\left(Y^{2}\right)$,
(f) $\operatorname{Var}(X)$,
(g) $\operatorname{Var}(\boldsymbol{Y})$,
(h) $\operatorname{Cov}(X, Y)$,
(i) ρ

- Solution
(a)
(b)
(c)

$$
\begin{aligned}
& E(X)=\frac{1}{210} \int_{x=2}^{6} \int_{y=0}^{5}(x)(2 x+y) d x d y=\frac{268}{63} \\
& E(Y)=\frac{1}{210} \int_{x=2}^{6} \int_{y=0}^{5}(y)(2 x+y) d x d y=\frac{170}{63} \\
& E(X Y)=\frac{1}{210} \int_{x=2}^{6} \int_{y=0}^{5}(x y)(2 x+y) d x d y=\frac{80}{7}
\end{aligned}
$$

$$
\left(\begin{array}{c}
E\left(X^{2}\right)=\left.\frac{1}{210}\right|_{x=2} \int_{y=0}\left(x^{2}\right)(2 x+y) d x d y=\frac{1220}{63} \\
\text { (d) } \quad E\left(Y^{2}\right)=\frac{1}{210} \int_{x=2}^{6} \int_{y=0}^{5}\left(y^{2}\right)(2 x+y) d x d y=\frac{1175}{126} \\
\text { (f) } \\
\text { (g) } \quad \sigma_{X}^{2}=\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{1220}{63}-\left(\frac{268}{63}\right)^{2}=\frac{5036}{3969} \\
\text { (h) } \quad \sigma_{Y}^{2}=\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{1175}{126}-\left(\frac{170}{63}\right)^{2}=\frac{16,225}{7938} \\
\text { (i) } \quad \rho=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{80}{7}-\left(\frac{268}{63}\right)\left(\frac{170}{63}\right)=-\frac{200}{3969}}{\sqrt{5036 / 3969} \sqrt{16,225 / 7938}}=\frac{-200}{\sqrt{2518} \sqrt{16,225}}=-0.03129 \text { approx. }
\end{array}\right.
$$

\checkmark Example 6: Proof the following theorem

$$
\sigma_{X Y}=\mu_{1,1}^{\prime}-\mu_{X} \mu_{Y}
$$

- Solution

Proof By definition the covariance of X and Y and using the various theorems about expected values, we can write

$$
\begin{aligned}
\sigma_{X Y} & =\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right] \\
& =E(X Y)-\mu_{X} E(Y)-\mu_{Y} E(X)+E\left(\mu_{X} \mu_{Y}\right) \\
& =E(X Y)-\mu_{X} \mu_{Y}-\mu_{Y} \mu_{X}+\mu_{X} \mu_{Y} \\
& =E(X Y)-\mu_{X} \mu_{Y} \\
& =E(X Y)-E(X) E(Y)
\end{aligned}
$$

\checkmark Example 7: Proof the following theorem
If X and Y are independent, then $E(X Y)=E(X) \cdot E(Y)$ and $\sigma_{X Y}=0$.

- Solution

Proof For the discrete case we have, by definition,

$$
E(X Y)=\sum_{x} \sum_{y} x y \cdot f(x, y)
$$

Since X and Y are independent, we can write $f(x, y)=g(x) \cdot h(y)$, where $g(x)$ and $\boldsymbol{h}(\boldsymbol{y})$ are the values of the marginal distributions of X and Y, and we get

$$
\begin{aligned}
E(X Y) & =\sum_{x} \sum_{y} x y \cdot g(x) h(y) \\
& =\left[\sum_{x} x \cdot g(x)\right]\left[\sum_{y} y \cdot h(y)\right] \\
& =E(X) \cdot E(Y)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sigma_{X Y} & =\mu_{1,1}^{\prime}-\mu_{X} \mu_{Y} \\
& =E(X) \cdot E(Y)-E(X) \cdot E(Y) \\
& =0
\end{aligned}
$$

\checkmark Theorem (Remark)
If
$X 1, X 2, \ldots, X n$ are independent
Then
$E(X 1 X 2 \ldots X n)=E(X 1) \cdot E(X 2) \cdot \ldots \cdot E(X n)$
This is a generalization of the first part of above theorem.

